If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-680=0
a = 1; b = 40; c = -680;
Δ = b2-4ac
Δ = 402-4·1·(-680)
Δ = 4320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4320}=\sqrt{144*30}=\sqrt{144}*\sqrt{30}=12\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-12\sqrt{30}}{2*1}=\frac{-40-12\sqrt{30}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+12\sqrt{30}}{2*1}=\frac{-40+12\sqrt{30}}{2} $
| -5+x=-35 | | 7p=-99 | | .d–112=512 | | y–1.2=4.8 | | 2x^-1=12 | | 2−t=1= | | 39.98+0.15x=49.98+0.13x | | X-20=4y | | 18+0.09x=0.14x | | 7x-(35-4)=12 | | 13x+104=7x | | 3w+w+50+7w-13=180 | | v-4+3v-5+33=180 | | 3x+8x-30=180 | | w+20+6w+7w-8=180 | | 120-m2=66 | | w+20+6w+7w–8=180 | | 2y^2-20y=18 | | 2y-20+3y-15+30=180 | | h–5=4 | | 1/4+1/8+1/5+10=x | | 2y–20+3y–15+30=180 | | 2x-2x*270=-464 | | 2y^2+20y=18 | | u+49+49+36=180 | | (a+2)(a-1)(a+3)=0 | | 2x-2x*2x=-180 | | 37z+z+34+108=180 | | 1/3x+1/4x+25=x | | x+25+41+61=180 | | 2x+7=10-3x | | ⅔(x-1)+4=5 |